Python Decorator

Decorators are one of the most helpful and powerful tools of Python. These are used to modify the behavior of the function. Decorators provide the flexibility to wrap another function to expand the working of wrapped function, without permanently modifying it.

In Decorators, functions are passed as an argument into another function and then called inside the wrapper function.

It is also called meta programming where a part of the program attempts to change another part of program at compile time.

Before understanding the Decorator, we need to know some important concepts of Python.

What are the functions in Python?

Python has the most interesting feature that everything is treated as an object even classes or any variable we define in Python is also assumed as an object. Functions are first-class objects in the Python because they can reference to, passed to a variable and returned from other functions as well. The example is given below:

Example:

def func1(msg):    # here, we are creating a function and passing the parameter  

    print(msg)    

func1("Hii, welcome to function ")   # Here, we are printing the data of function 1  

func2 = func1      # Here, we are copying the function 1 data to function 2  

func2("Hii, welcome to function ")   # Here, we are printing the data of function 2

Output:Hii, welcome to function Hii, welcome to function

In the above program, when we run the code it give the same output for both functions. The func2referred to function func1 and act as function. We need to understand the following concept of the function:

  • The function can be referenced and passed to a variable and returned from other functions as well.
  • The functions can be declared inside another function and passed as an argument to another function.

Inner Function

Python provides the facility to define the function inside another function. These types of functions are called inner functions. Consider the following example:

Example:

def func():    # here, we are creating a function and passing the parameter  

     print("We are in first function")      # Here, we are printing the data of function   

     def func1():      # here, we are creating a function and passing the parameter  

           print("This is first child function")  # Here, we are printing the data of function 1   

     def func2():      # here, we are creating a function and passing the parameter  

           print("This is second child function")      # Here, we are printing the data of         # function 2   

     func1()    

     func2()    

func()

Output:We are in first function This is first child function This is second child function

In the above program, it doesn’t matter how the child functions are declared. The execution of the child function makes effect on the output. These child functions are locally bounded with the func() so they cannot be called separately.

A function that accepts other function as an argument is also called higher order function. Consider the following example:

Example:

def add(x):          # here, we are creating a function add and passing the parameter  

    return x+1       # here, we are returning the passed value by adding 1  

def sub(x):          # here, we are creating a function sub and passing the parameter  

    return x-1        # here, we are returning the passed value by subtracting 1  

def operator(func, x):    # here, we are creating a function and passing the parameter  

    temp = func(x)    

    return temp    

print(operator(sub,10))  # here, we are printing the operation subtraction with 10  

print(operator(add,20))   # here, we are printing the operation addition with 20

Output:9 21

In the above program, we have passed the sub() function and add() function as argument in operator() function.

A function can return another function. Consider the below example:

Example:

def hello():         # here, we are creating a function named hello  

    def hi():         # here, we are creating a function named hi  

        print("Hello")             # here, we are printing the output of the function  

    return hi         # here, we are returning the output of the function  

new = hello()    

new()

Output:Hello

In the above program, the hi() function is nested inside the hello() function. It will return each time we call hi().

Decorating functions with parameters

Let’s have an example to understand the parameterized decorator function:

Example:

def divide(x,y):       # here, we are creating a function and passing the parameter  

    print(x/y)         # Here, we are printing the result of the expression  

def outer_div(func):      # here, we are creating a function and passing the parameter    

    def inner(x,y):      # here, we are creating a function and passing the parameter  

        if(x<y):    

            x,y = y,x    

           return func(x,y)       

# here, we are returning a function with some passed parameters  

     return inner    

divide1 = outer_div(divide)    

divide1(2,4)

Output:

Syntactic Decorator

In the above program, we have decorated out_div() that is little bit bulky. Instead of using above method, Python allows to use decorator in easy way with @symbol. Sometimes it is called “pie” syntax.

def outer_div(func):     # here, we are creating a function and passing the parameter  

    def inner(x,y):        # here, we are creating a function and passing the parameter  

        if(x<y):    

           x,y = y,x    

          return func(x,y)       # here, we are returning the function with the parameters  

     return inner    

# Here, the below is the syntax of generator    

@outer_div    

def divide(x,y):      # here, we are creating a function and passing the parameter   

     print(x/y)

Output:2.0

Reusing Decorator

We can reuse the decorator as well by recalling that decorator function. Let’s make the decorator to its own module that can be used in many other functions. Creating a file called mod_decorator.py with the following code:

def do_twice(func):      # here, we are creating a function and passing the parameter  

    def wrapper_do_twice():       

     # here, we are creating a function and passing the parameter  

        func()    

        func()    

    return wrapper_do_twice    

We can import mod_decorator.py in another file.  

from decorator import do_twice    

@do_twice    

def say_hello():    

    print("Hello There")    

say_hello()

We can import mod_decorator.py in other file.

from decorator import do_twice  

@do_twice  

def say_hello():  

    print("Hello There")  

say_hello()

Output:Hello There Hello There

Python Decorator with Argument

We want to pass some arguments in function. Let’s do it in following code:

from decorator import do_twice  

@do_twice  

def display(name):  

     print(f"Hello {name}")  

display()

Output:TypeError: display() missing 1 required positional argument: ‘name’

As we can see that, the function didn’t accept the argument. Running this code raises an error. We can fix this error by using *args and **kwargsin the inner wrapper function. Modifying the decorator.pyas follows:

def do_twice(func):  

    def wrapper_function(*args,**kwargs):  

        func(*args,**kwargs)  

        func(*args,**kwargs)  

   return wrapper_function

Now wrapper_function() can accept any number of argument and pass them on the function.

from decorator import do_twice  

@do_twice  

def display(name):  

      print(f"Hello {name}")  

display("John")

Output:Hello John Hello John

Returning Values from Decorated Functions

We can control the return type of the decorated function. The example is given below:

from decorator import do_twice  

@do_twice  

def return_greeting(name):  

     print("We are created greeting")  

     return f"Hi {name}"  

hi_adam = return_greeting("Adam")

Output:We are created greeting We are created greeting

Fancy Decorators

Let’s understand the fancy decorators by the following topic:

Class Decorators

Python provides two ways to decorate a class. Firstly, we can decorate the method inside a class; there are built-in decorators like @classmethod, @staticmethod and @property in Python. The @classmethod and @staticmethod define methods inside class that is not connected to any other instance of a class. The @property is generally used to modify the getters and setters of a class attributes. Let’s understand it by the following example:

Example: 1-

@property decorator – By using it, we can use the class function as an attribute. Consider the following code:

class Student:     # here, we are creating a class with the name Student  

    def __init__(self,name,grade):    

         self.name = name    

         self.grade = grade    

    @property    

    def display(self):    

         return self.name + " got grade " + self.grade    

    

stu = Student("John","B")    

print("Name of the student: ", stu.name)    

print("Grade of the student: ", stu.grade)    

print(stu.display)

Output:Name of the student: John Grade of the student: B John got grade B

Example: 2-

@staticmethod decorator– The @staticmethod is used to define a static method in the class. It is called by using the class name as well as instance of the class. Consider the following code:

class Person:       # here, we are creating a class with the name Student  

     @staticmethod    

     def hello():         # here, we are defining a function hello  

          print("Hello Peter")    

per = Person()    

per.hello()    

Person.hello()

Output:Hello Peter Hello Peter

Singleton Class

A singleton class only has one instance. There are many singletons in Python including True, None, etc.

Nesting Decorators

We can use multiple decorators by using them on top of each other. Let’s consider the following example:

@function1  

@function2  

def function(name):  

      print(f "{name}")

In the above code, we have used the nested decorator by stacking them onto one another.

Decorator with Arguments

It is always useful to pass arguments in a decorator. The decorator can be executed several times according to the given value of the argument. Let us consider the following example:

Example:

Import functools      # here, we are importing the functools into our program  

def repeat(num):     # here, we are defining a function repeat and passing parameter  

# Here, we are creating and returning a wrapper function    

    def decorator_repeat(func):    

        @functools.wraps(func)    

        def wrapper(*args,**kwargs):    

            for _ in range(num):  # here, we are initializing a for loop and iterating till num  

                value = func(*args,**kwargs)    

             return value      # here, we are returning the value  

          return wrapper    # here, we are returning the wrapper class  

    return decorator_repeat    

#Here we are passing num as an argument which repeats the print function    

@repeat(num=5)       

def function1(name):    

     print(f"{name}")

Output:JavatPoint JavatPoint JavatPoint JavatPoint JavatPoint

In the above example, @repeatrefers to a function object that can be called in another function. The @repeat(num = 5)will return a function which acts as a decorator.

The above code may look complex but it is the most commonly used decorator pattern where we have used one additional def that handles the arguments to the decorator.

Note: Decorator with argument is not frequently used in programming, but it provides flexibility. We can use it with or without argument.

Stateful Decorators

Stateful decorators are used to keep track of the decorator state. Let us consider the example where we are creating a decorator that counts how many times the function has been called.

Example:

Import functools          # here, we are importing the functools into our program  

def count_function(func):       

# here, we are defining a function and passing the parameter func    

@functools.wraps(func)    

def wrapper_count_calls(*args, **kwargs):    

wrapper_count_calls.num_calls += 1    

print(f"Call{wrapper_count_calls.num_calls} of {func.__name__!r}")    

return func(*args, **kwargs)    

wrapper_count_calls.num_calls = 0    

return wrapper_count_calls      # here, we are returning the wrapper call counts  

@count_function    

def say_hello():  # here, we are defining a function and passing the parameter   

print("Say Hello")    

say_hello()    

say_hello()

Output:Call 1 of ‘say_hello’ Say Hello Call 2 of ‘say_hello’ Say Hello

In the above program, the state represented the number of calls of the function stored in .num_callson the wrapper function. When we call say_hello()it will display the number of the call of the function.

Classes as Decorators

The classes are the best way to maintain state. In this section, we will learn how to use a class as a decorator. Here we will create a class that contains __init__() and take func as an argument. The class needs to be callable so that it can stand in for the decorated function.

To making a class callable, we implement the special __call__() method.

Code

import functools         # here, we are importing the functools into our program  

class Count_Calls:       # here, we are creating a class for getting the call count  

def __init__(self, func):    

functools.update_wrapper(self, func)    

self.func = func    

self.num_calls = 0    

def __call__(self, *args, **kwargs):    

self.num_calls += 1    

print(f"Call{self.num_calls} of {self.func.__name__!r}")    

return self.func(*args, **kwargs)    

@Count_Calls    

def say_hello():  # here, we are defining a function and passing the parameter  

print("Say Hello")    

say_hello()    

say_hello()    

say_hello()

Output:Call 1 of ‘say_hello’ Say Hello Call 2 of ‘say_hello’ Say Hello Call 3 of ‘say_hello’ Say Hello

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *