Decision making structures require that the programmer specify one or more conditions to be evaluated or tested by the program, along with a statement or statements to be executed if the condition is determined to be true, and optionally, other statements to be executed if the condition is determined to be false.
Following is the general form of a typical decision making structure found in most of the programming languages −
C++ programming language provides following types of decision making statements.
Sr.No
Statement & Description
1
if statementAn ‘if’ statement consists of a boolean expression followed by one or more statements.
2
if…else statementAn ‘if’ statement can be followed by an optional ‘else’ statement, which executes when the boolean expression is false.
3
switch statementA ‘switch’ statement allows a variable to be tested for equality against a list of values.
4
nested if statementsYou can use one ‘if’ or ‘else if’ statement inside another ‘if’ or ‘else if’ statement(s).
5
nested switch statementsYou can use one ‘switch’ statement inside another ‘switch’ statement(s).
The ? : Operator
We have covered conditional operator “? :” in previous chapter which can be used to replace if…else statements. It has the following general form −
Exp1 ? Exp2 : Exp3;
Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.
The value of a ‘?’ expression is determined like this: Exp1 is evaluated. If it is true, then Exp2 is evaluated and becomes the value of the entire ‘?’ expression. If Exp1 is false, then Exp3 is evaluated and its value becomes the value of the expression.
There may be a situation, when you need to execute a block of code several number of times. In general, statements are executed sequentially: The first statement in a function is executed first, followed by the second, and so on.
Programming languages provide various control structures that allow for more complicated execution paths.
A loop statement allows us to execute a statement or group of statements multiple times and following is the general from of a loop statement in most of the programming languages −
C++ programming language provides the following type of loops to handle looping requirements.
Sr.No
Loop Type & Description
1
while loopRepeats a statement or group of statements while a given condition is true. It tests the condition before executing the loop body.
2
for loopExecute a sequence of statements multiple times and abbreviates the code that manages the loop variable.
3
do…while loopLike a ‘while’ statement, except that it tests the condition at the end of the loop body.
4
nested loopsYou can use one or more loop inside any another ‘while’, ‘for’ or ‘do..while’ loop.
Loop Control Statements
Loop control statements change execution from its normal sequence. When execution leaves a scope, all automatic objects that were created in that scope are destroyed.
C++ supports the following control statements.
Sr.No
Control Statement & Description
1
break statementTerminates the loop or switch statement and transfers execution to the statement immediately following the loop or switch.
2
continue statementCauses the loop to skip the remainder of its body and immediately retest its condition prior to reiterating.
3
goto statementTransfers control to the labeled statement. Though it is not advised to use goto statement in your program.
The Infinite Loop
A loop becomes infinite loop if a condition never becomes false. The for loop is traditionally used for this purpose. Since none of the three expressions that form the ‘for’ loop are required, you can make an endless loop by leaving the conditional expression empty.
#include <iostream>
using namespace std;
int main () {
for( ; ; ) {
printf("This loop will run forever.\n");
}
return 0;
}
When the conditional expression is absent, it is assumed to be true. You may have an initialization and increment expression, but C++ programmers more commonly use the ‘for (;;)’ construct to signify an infinite loop.
An operator is a symbol that tells the compiler to perform specific mathematical or logical manipulations. C++ is rich in built-in operators and provide the following types of operators −
Arithmetic Operators
Relational Operators
Logical Operators
Bitwise Operators
Assignment Operators
Misc Operators
This chapter will examine the arithmetic, relational, logical, bitwise, assignment and other operators one by one.
Arithmetic Operators
There are following arithmetic operators supported by C++ language −
Assume variable A holds 10 and variable B holds 20, then −
Operator
Description
Example
+
Adds two operands
A + B will give 30
–
Subtracts second operand from the first
A – B will give -10
*
Multiplies both operands
A * B will give 200
/
Divides numerator by de-numerator
B / A will give 2
%
Modulus Operator and remainder of after an integer division
B % A will give 0
++
Increment operator, increases integer value by one
A++ will give 11
—
Decrement operator, decreases integer value by one
A– will give 9
Relational Operators
There are following relational operators supported by C++ language
Assume variable A holds 10 and variable B holds 20, then −
Operator
Description
Example
==
Checks if the values of two operands are equal or not, if yes then condition becomes true.
(A == B) is not true.
!=
Checks if the values of two operands are equal or not, if values are not equal then condition becomes true.
(A != B) is true.
>
Checks if the value of left operand is greater than the value of right operand, if yes then condition becomes true.
(A > B) is not true.
<
Checks if the value of left operand is less than the value of right operand, if yes then condition becomes true.
(A < B) is true.
>=
Checks if the value of left operand is greater than or equal to the value of right operand, if yes then condition becomes true.
(A >= B) is not true.
<=
Checks if the value of left operand is less than or equal to the value of right operand, if yes then condition becomes true.
(A <= B) is true.
Logical Operators
There are following logical operators supported by C++ language.
Assume variable A holds 1 and variable B holds 0, then −
Operator
Description
Example
&&
Called Logical AND operator. If both the operands are non-zero, then condition becomes true.
(A && B) is false.
||
Called Logical OR Operator. If any of the two operands is non-zero, then condition becomes true.
(A || B) is true.
!
Called Logical NOT Operator. Use to reverses the logical state of its operand. If a condition is true, then Logical NOT operator will make false.
!(A && B) is true.
Bitwise Operators
Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and ^ are as follows −
p
q
p & q
p | q
p ^ q
0
0
0
0
0
0
1
0
1
1
1
1
1
1
0
1
0
0
1
1
Assume if A = 60; and B = 13; now in binary format they will be as follows −
A = 0011 1100
B = 0000 1101
—————–
A&B = 0000 1100
A|B = 0011 1101
A^B = 0011 0001
~A = 1100 0011
The Bitwise operators supported by C++ language are listed in the following table. Assume variable A holds 60 and variable B holds 13, then −
Operator
Description
Example
&
Binary AND Operator copies a bit to the result if it exists in both operands.
(A & B) will give 12 which is 0000 1100
|
Binary OR Operator copies a bit if it exists in either operand.
(A | B) will give 61 which is 0011 1101
^
Binary XOR Operator copies the bit if it is set in one operand but not both.
(A ^ B) will give 49 which is 0011 0001
~
Binary Ones Complement Operator is unary and has the effect of ‘flipping’ bits.
(~A ) will give -61 which is 1100 0011 in 2’s complement form due to a signed binary number.
<<
Binary Left Shift Operator. The left operands value is moved left by the number of bits specified by the right operand.
A << 2 will give 240 which is 1111 0000
>>
Binary Right Shift Operator. The left operands value is moved right by the number of bits specified by the right operand.
A >> 2 will give 15 which is 0000 1111
Assignment Operators
There are following assignment operators supported by C++ language −
Operator
Description
Example
=
Simple assignment operator, Assigns values from right side operands to left side operand.
C = A + B will assign value of A + B into C
+=
Add AND assignment operator, It adds right operand to the left operand and assign the result to left operand.
C += A is equivalent to C = C + A
-=
Subtract AND assignment operator, It subtracts right operand from the left operand and assign the result to left operand.
C -= A is equivalent to C = C – A
*=
Multiply AND assignment operator, It multiplies right operand with the left operand and assign the result to left operand.
C *= A is equivalent to C = C * A
/=
Divide AND assignment operator, It divides left operand with the right operand and assign the result to left operand.
C /= A is equivalent to C = C / A
%=
Modulus AND assignment operator, It takes modulus using two operands and assign the result to left operand.
C %= A is equivalent to C = C % A
<<=
Left shift AND assignment operator.
C <<= 2 is same as C = C << 2
>>=
Right shift AND assignment operator.
C >>= 2 is same as C = C >> 2
&=
Bitwise AND assignment operator.
C &= 2 is same as C = C & 2
^=
Bitwise exclusive OR and assignment operator.
C ^= 2 is same as C = C ^ 2
|=
Bitwise inclusive OR and assignment operator.
C |= 2 is same as C = C | 2
Misc Operators
The following table lists some other operators that C++ supports.
Sr.No
Operator & Description
1
sizeofsizeof operator returns the size of a variable. For example, sizeof(a), where ‘a’ is integer, and will return 4.
2
Condition ? X : YConditional operator (?). If Condition is true then it returns value of X otherwise returns value of Y.
3
,Comma operator causes a sequence of operations to be performed. The value of the entire comma expression is the value of the last expression of the comma-separated list.
4
. (dot) and -> (arrow)Member operators are used to reference individual members of classes, structures, and unions.
5
CastCasting operators convert one data type to another. For example, int(2.2000) would return 2.
6
&Pointer operator & returns the address of a variable. For example &a; will give actual address of the variable.
7
*Pointer operator * is pointer to a variable. For example *var; will pointer to a variable var.
Operators Precedence in C++
Operator precedence determines the grouping of terms in an expression. This affects how an expression is evaluated. Certain operators have higher precedence than others; for example, the multiplication operator has higher precedence than the addition operator −
For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher precedence than +, so it first gets multiplied with 3*2 and then adds into 7.
Here, operators with the highest precedence appear at the top of the table, those with the lowest appear at the bottom. Within an expression, higher precedence operators will be evaluated first.
A storage class defines the scope (visibility) and life-time of variables and/or functions within a C++ Program. These specifiers precede the type that they modify. There are following storage classes, which can be used in a C++ Program
auto
register
static
extern
mutable
The auto Storage Class
The auto storage class is the default storage class for all local variables.
{
int mount;
auto int month;
}
The example above defines two variables with the same storage class, auto can only be used within functions, i.e., local variables.
The register Storage Class
The register storage class is used to define local variables that should be stored in a register instead of RAM. This means that the variable has a maximum size equal to the register size (usually one word) and can’t have the unary ‘&’ operator applied to it (as it does not have a memory location).
{
register int miles;
}
The register should only be used for variables that require quick access such as counters. It should also be noted that defining ‘register’ does not mean that the variable will be stored in a register. It means that it MIGHT be stored in a register depending on hardware and implementation restrictions.
The static Storage Class
The static storage class instructs the compiler to keep a local variable in existence during the life-time of the program instead of creating and destroying it each time it comes into and goes out of scope. Therefore, making local variables static allows them to maintain their values between function calls.
The static modifier may also be applied to global variables. When this is done, it causes that variable’s scope to be restricted to the file in which it is declared.
In C++, when static is used on a class data member, it causes only one copy of that member to be shared by all objects of its class.
#include <iostream>
// Function declaration
void func(void);
static int count = 10; /* Global variable */
main() {
while(count--) {
func();
}
return 0;
}
// Function definition
void func( void ) {
static int i = 5; // local static variable
i++;
std::cout << "i is " << i ;
std::cout << " and count is " << count << std::endl;
}
When the above code is compiled and executed, it produces the following result −
i is 6 and count is 9
i is 7 and count is 8
i is 8 and count is 7
i is 9 and count is 6
i is 10 and count is 5
i is 11 and count is 4
i is 12 and count is 3
i is 13 and count is 2
i is 14 and count is 1
i is 15 and count is 0
The extern Storage Class
The extern storage class is used to give a reference of a global variable that is visible to ALL the program files. When you use ‘extern’ the variable cannot be initialized as all it does is point the variable name at a storage location that has been previously defined.
When you have multiple files and you define a global variable or function, which will be used in other files also, then extern will be used in another file to give reference of defined variable or function. Just for understanding extern is used to declare a global variable or function in another file.
The extern modifier is most commonly used when there are two or more files sharing the same global variables or functions as explained below.
#include <iostream>
extern int count;
void write_extern(void) {
std::cout << "Count is " << count << std::endl;
}
Here, extern keyword is being used to declare count in another file. Now compile these two files as follows −
$g++ main.cpp support.cpp -o write
This will produce write executable program, try to execute write and check the result as follows −
$./write
5
The mutable Storage Class
The mutable specifier applies only to class objects, which are discussed later in this tutorial. It allows a member of an object to override const member function. That is, a mutable member can be modified by a const member function.
C++ allows the char, int, and double data types to have modifiers preceding them. A modifier is used to alter the meaning of the base type so that it more precisely fits the needs of various situations.
The data type modifiers are listed here −
signed
unsigned
long
short
The modifiers signed, unsigned, long, and short can be applied to integer base types. In addition, signed and unsigned can be applied to char, and long can be applied to double.
The modifiers signed and unsigned can also be used as prefix to long or short modifiers. For example, unsigned long int.
C++ allows a shorthand notation for declaring unsigned, short, or long integers. You can simply use the word unsigned, short, or long, without int. It automatically implies int. For example, the following two statements both declare unsigned integer variables.
unsigned x;
unsigned int y;
To understand the difference between the way signed and unsigned integer modifiers are interpreted by C++, you should run the following short program −
#include <iostream>
using namespace std;
/* This program shows the difference between
* signed and unsigned integers.
*/
int main() {
short int i; // a signed short integer
short unsigned int j; // an unsigned short integer
j = 50000;
i = j;
cout << i << " " << j;
return 0;
}
When this program is run, following is the output −
-15536 50000
The above result is because the bit pattern that represents 50,000 as a short unsigned integer is interpreted as -15,536 by a short.
Type Qualifiers in C++
The type qualifiers provide additional information about the variables they precede.
Sr.No
Qualifier & Meaning
1
constObjects of type const cannot be changed by your program during execution.
2
volatileThe modifier volatile tells the compiler that a variable’s value may be changed in ways not explicitly specified by the program.
3
restrictA pointer qualified by restrict is initially the only means by which the object it points to can be accessed. Only C99 adds a new type qualifier called restrict.
Constants refer to fixed values that the program may not alter and they are called literals.
Constants can be of any of the basic data types and can be divided into Integer Numerals, Floating-Point Numerals, Characters, Strings and Boolean Values.
Again, constants are treated just like regular variables except that their values cannot be modified after their definition.
Integer Literals
An integer literal can be a decimal, octal, or hexadecimal constant. A prefix specifies the base or radix: 0x or 0X for hexadecimal, 0 for octal, and nothing for decimal.
An integer literal can also have a suffix that is a combination of U and L, for unsigned and long, respectively. The suffix can be uppercase or lowercase and can be in any order.
Here are some examples of integer literals −
212 // Legal
215u // Legal
0xFeeL // Legal
078 // Illegal: 8 is not an octal digit
032UU // Illegal: cannot repeat a suffix
Following are other examples of various types of Integer literals −
85 // decimal
0213 // octal
0x4b // hexadecimal
30 // int
30u // unsigned int
30l // long
30ul // unsigned long
Floating-point Literals
A floating-point literal has an integer part, a decimal point, a fractional part, and an exponent part. You can represent floating point literals either in decimal form or exponential form.
While representing using decimal form, you must include the decimal point, the exponent, or both and while representing using exponential form, you must include the integer part, the fractional part, or both. The signed exponent is introduced by e or E.
Here are some examples of floating-point literals −
3.14159 // Legal
314159E-5L // Legal
510E // Illegal: incomplete exponent
210f // Illegal: no decimal or exponent
.e55 // Illegal: missing integer or fraction
Boolean Literals
There are two Boolean literals and they are part of standard C++ keywords −
A value of true representing true.
A value of false representing false.
You should not consider the value of true equal to 1 and value of false equal to 0.
Character Literals
Character literals are enclosed in single quotes. If the literal begins with L (uppercase only), it is a wide character literal (e.g., L’x’) and should be stored in wchar_t type of variable . Otherwise, it is a narrow character literal (e.g., ‘x’) and can be stored in a simple variable of char type.
A character literal can be a plain character (e.g., ‘x’), an escape sequence (e.g., ‘\t’), or a universal character (e.g., ‘\u02C0’).
There are certain characters in C++ when they are preceded by a backslash they will have special meaning and they are used to represent like newline (\n) or tab (\t). Here, you have a list of some of such escape sequence codes −
Escape sequence
Meaning
\\
\ character
\’
‘ character
\”
” character
\?
? character
\a
Alert or bell
\b
Backspace
\f
Form feed
\n
Newline
\r
Carriage return
\t
Horizontal tab
\v
Vertical tab
\ooo
Octal number of one to three digits
\xhh . . .
Hexadecimal number of one or more digits
Following is the example to show a few escape sequence characters −
#include <iostream>
using namespace std;
int main() {
cout << "Hello\tWorld\n\n";
return 0;
}
When the above code is compiled and executed, it produces the following result −
Hello World
String Literals
String literals are enclosed in double quotes. A string contains characters that are similar to character literals: plain characters, escape sequences, and universal characters.
You can break a long line into multiple lines using string literals and separate them using whitespaces.
Here are some examples of string literals. All the three forms are identical strings.
"hello, dear"
"hello, \
dear"
"hello, " "d" "ear"
Defining Constants
There are two simple ways in C++ to define constants −
Using #define preprocessor.
Using const keyword.
The #define Preprocessor
Following is the form to use #define preprocessor to define a constant −
#define identifier value
Following example explains it in detail −
#include <iostream>
using namespace std;
#define LENGTH 10
#define WIDTH 5
#define NEWLINE '\n'
int main() {
int area;
area = LENGTH * WIDTH;
cout << area;
cout << NEWLINE;
return 0;
}
When the above code is compiled and executed, it produces the following result −
50
The const Keyword
You can use const prefix to declare constants with a specific type as follows −
const type variable = value;
Following example explains it in detail −
#include <iostream>
using namespace std;
int main() {
const int LENGTH = 10;
const int WIDTH = 5;
const char NEWLINE = '\n';
int area;
area = LENGTH * WIDTH;
cout << area;
cout << NEWLINE;
return 0;
}
When the above code is compiled and executed, it produces the following result −
50
Note that it is a good programming practice to define constants in CAPITALS.
A scope is a region of the program and broadly speaking there are three places, where variables can be declared −
Inside a function or a block which is called local variables,
In the definition of function parameters which is called formal parameters.
Outside of all functions which is called global variables.
We will learn what is a function and it’s parameter in subsequent chapters. Here let us explain what are local and global variables.
Local Variables
Variables that are declared inside a function or block are local variables. They can be used only by statements that are inside that function or block of code. Local variables are not known to functions outside their own. Following is the example using local variables −
#include <iostream>
using namespace std;
int main () {
// Local variable declaration:
int a, b;
int c;
// actual initialization
a = 10;
b = 20;
c = a + b;
cout << c;
return 0;
}
Global Variables
Global variables are defined outside of all the functions, usually on top of the program. The global variables will hold their value throughout the life-time of your program.
A global variable can be accessed by any function. That is, a global variable is available for use throughout your entire program after its declaration. Following is the example using global and local variables −
#include <iostream>
using namespace std;
// Global variable declaration:
int g;
int main () {
// Local variable declaration:
int a, b;
// actual initialization
a = 10;
b = 20;
g = a + b;
cout << g;
return 0;
}
A program can have same name for local and global variables but value of local variable inside a function will take preference. For example −
#include <iostream>
using namespace std;
// Global variable declaration:
int g = 20;
int main () {
// Local variable declaration:
int g = 10;
cout << g;
return 0;
}
When the above code is compiled and executed, it produces the following result −
10
Initializing Local and Global Variables
When a local variable is defined, it is not initialized by the system, you must initialize it yourself. Global variables are initialized automatically by the system when you define them as follows −
Data Type
Initializer
int
0
char
‘\0’
float
0
double
0
pointer
NULL
It is a good programming practice to initialize variables properly, otherwise sometimes program would produce unexpected result.
A variable provides us with named storage that our programs can manipulate. Each variable in C++ has a specific type, which determines the size and layout of the variable’s memory; the range of values that can be stored within that memory; and the set of operations that can be applied to the variable.
The name of a variable can be composed of letters, digits, and the underscore character. It must begin with either a letter or an underscore. Upper and lowercase letters are distinct because C++ is case-sensitive −
There are following basic types of variable in C++ as explained in last chapter −
Sr.No
Type & Description
1
boolStores either value true or false.
2
charTypically a single octet (one byte). This is an integer type.
3
intThe most natural size of integer for the machine.
4
floatA single-precision floating point value.
5
doubleA double-precision floating point value.
6
voidRepresents the absence of type.
7
wchar_tA wide character type.
C++ also allows to define various other types of variables, which we will cover in subsequent chapters like Enumeration, Pointer, Array, Reference, Data structures, and Classes.
Following section will cover how to define, declare and use various types of variables.
Variable Definition in C++
A variable definition tells the compiler where and how much storage to create for the variable. A variable definition specifies a data type, and contains a list of one or more variables of that type as follows −
type variable_list;
Here, type must be a valid C++ data type including char, w_char, int, float, double, bool or any user-defined object, etc., and variable_list may consist of one or more identifier names separated by commas. Some valid declarations are shown here −
int i, j, k;
char c, ch;
float f, salary;
double d;
The line int i, j, k; both declares and defines the variables i, j and k; which instructs the compiler to create variables named i, j and k of type int.
Variables can be initialized (assigned an initial value) in their declaration. The initializer consists of an equal sign followed by a constant expression as follows −
type variable_name = value;
Some examples are −
extern int d = 3, f = 5; // declaration of d and f.
int d = 3, f = 5; // definition and initializing d and f.
byte z = 22; // definition and initializes z.
char x = 'x'; // the variable x has the value 'x'.
For definition without an initializer: variables with static storage duration are implicitly initialized with NULL (all bytes have the value 0); the initial value of all other variables is undefined.
Variable Declaration in C++
A variable declaration provides assurance to the compiler that there is one variable existing with the given type and name so that compiler proceed for further compilation without needing complete detail about the variable. A variable declaration has its meaning at the time of compilation only, compiler needs actual variable definition at the time of linking of the program.
A variable declaration is useful when you are using multiple files and you define your variable in one of the files which will be available at the time of linking of the program. You will use extern keyword to declare a variable at any place. Though you can declare a variable multiple times in your C++ program, but it can be defined only once in a file, a function or a block of code.
Example
Try the following example where a variable has been declared at the top, but it has been defined inside the main function −
#include <iostream>
using namespace std;
// Variable declaration:
extern int a, b;
extern int c;
extern float f;
int main () {
// Variable definition:
int a, b;
int c;
float f;
// actual initialization
a = 10;
b = 20;
c = a + b;
cout << c << endl ;
f = 70.0/3.0;
cout << f << endl ;
return 0;
}
When the above code is compiled and executed, it produces the following result −
30
23.3333
Same concept applies on function declaration where you provide a function name at the time of its declaration and its actual definition can be given anywhere else. For example −
// function declaration
int func();
int main() {
// function call
int i = func();
}
// function definition
int func() {
return 0;
}
Lvalues and Rvalues
There are two kinds of expressions in C++ −
lvalue − Expressions that refer to a memory location is called “lvalue” expression. An lvalue may appear as either the left-hand or right-hand side of an assignment.
rvalue − The term rvalue refers to a data value that is stored at some address in memory. An rvalue is an expression that cannot have a value assigned to it which means an rvalue may appear on the right- but not left-hand side of an assignment.
Variables are lvalues and so may appear on the left-hand side of an assignment. Numeric literals are rvalues and so may not be assigned and can not appear on the left-hand side. Following is a valid statement −
int g = 20;
But the following is not a valid statement and would generate compile-time error −
While writing program in any language, you need to use various variables to store various information. Variables are nothing but reserved memory locations to store values. This means that when you create a variable you reserve some space in memory.
You may like to store information of various data types like character, wide character, integer, floating point, double floating point, boolean etc. Based on the data type of a variable, the operating system allocates memory and decides what can be stored in the reserved memory.
Primitive Built-in Types
C++ offers the programmer a rich assortment of built-in as well as user defined data types. Following table lists down seven basic C++ data types −
Type
Keyword
Boolean
bool
Character
char
Integer
int
Floating point
float
Double floating point
double
Valueless
void
Wide character
wchar_t
Several of the basic types can be modified using one or more of these type modifiers −
signed
unsigned
short
long
The following table shows the variable type, how much memory it takes to store the value in memory, and what is maximum and minimum value which can be stored in such type of variables.
Type
Typical Bit Width
Typical Range
char
1byte
-127 to 127 or 0 to 255
unsigned char
1byte
0 to 255
signed char
1byte
-127 to 127
int
4bytes
-2147483648 to 2147483647
unsigned int
4bytes
0 to 4294967295
signed int
4bytes
-2147483648 to 2147483647
short int
2bytes
-32768 to 32767
unsigned short int
2bytes
0 to 65,535
signed short int
2bytes
-32768 to 32767
long int
8bytes
-9223372036854775808 to 9223372036854775807
signed long int
8bytes
same as long int
unsigned long int
8bytes
0 to 18446744073709551615
long long int
8bytes
-(2^63) to (2^63)-1
unsigned long long int
8bytes
0 to 18,446,744,073,709,551,615
float
4bytes
double
8bytes
long double
12bytes
wchar_t
2 or 4 bytes
1 wide character
The size of variables might be different from those shown in the above table, depending on the compiler and the computer you are using.
Following is the example, which will produce correct size of various data types on your computer.
#include <iostream>
using namespace std;
int main() {
cout << "Size of char : " << sizeof(char) << endl;
cout << "Size of int : " << sizeof(int) << endl;
cout << "Size of short int : " << sizeof(short int) << endl;
cout << "Size of long int : " << sizeof(long int) << endl;
cout << "Size of float : " << sizeof(float) << endl;
cout << "Size of double : " << sizeof(double) << endl;
cout << "Size of wchar_t : " << sizeof(wchar_t) << endl;
return 0;
}
This example uses endl, which inserts a new-line character after every line and << operator is being used to pass multiple values out to the screen. We are also using sizeof() operator to get size of various data types.
When the above code is compiled and executed, it produces the following result which can vary from machine to machine −
Size of char : 1
Size of int : 4
Size of short int : 2
Size of long int : 4
Size of float : 4
Size of double : 8
Size of wchar_t : 4
std::cout <<"Int Min "<< std::numeric_limits<int>::min()<< endl;
std::cout <<"Int Max "<< std::numeric_limits<int>::max()<< endl;
std::cout <<"Unsigned Int Min "<< std::numeric_limits<unsignedint>::min()<< endl;
std::cout <<"Unsigned Int Max "<< std::numeric_limits<unsignedint>::max()<< endl;
std::cout <<"Long Int Min "<< std::numeric_limits<longint>::min()<< endl;
std::cout <<"Long Int Max "<< std::numeric_limits<longint>::max()<< endl;
std::cout <<"Unsigned Long Int Min "<< std::numeric_limits<unsignedlongint>::min()<<endl;
std::cout <<"Unsigned Long Int Max "<< std::numeric_limits<unsignedlongint>::max()<< endl;}</code></pre>
typedef Declarations
You can create a new name for an existing type using typedef. Following is the simple syntax to define a new type using typedef −
typedef type newname;
For example, the following tells the compiler that feet is another name for int −
typedef int feet;
Now, the following declaration is perfectly legal and creates an integer variable called distance −
feet distance;
Enumerated Types
An enumerated type declares an optional type name and a set of zero or more identifiers that can be used as values of the type. Each enumerator is a constant whose type is the enumeration.
Creating an enumeration requires the use of the keyword enum. The general form of an enumeration type is −
enum enum-name { list of names } var-list;
Here, the enum-name is the enumeration's type name. The list of names is comma separated.
For example, the following code defines an enumeration of colors called colors and the variable c of type color. Finally, c is assigned the value "blue".
enum color { red, green, blue } c;
c = blue;
By default, the value of the first name is 0, the second name has the value 1, and the third has the value 2, and so on. But you can give a name, a specific value by adding an initializer. For example, in the following enumeration, green will have the value 5.
enum color { red, green = 5, blue };
Here, blue will have a value of 6 because each name will be one greater than the one that precedes it.
Program comments are explanatory statements that you can include in the C++ code. These comments help anyone reading the source code. All programming languages allow for some form of comments.
C++ supports single-line and multi-line comments. All characters available inside any comment are ignored by C++ compiler.
C++ comments start with /* and end with */. For example −
/* This is a comment */
/* C++ comments can also
* span multiple lines
*/
A comment can also start with //, extending to the end of the line. For example −
#include <iostream>
using namespace std;
main() {
cout << "Hello World"; // prints Hello World
return 0;
}
When the above code is compiled, it will ignore // prints Hello World and final executable will produce the following result −
Hello World
Within a /* and */ comment, // characters have no special meaning. Within a // comment, /* and */ have no special meaning. Thus, you can “nest” one kind of comment within the other kind. For example −
/* Comment out printing of Hello World:
cout << "Hello World"; // prints Hello World
*/