Nuclear Structure

Nucleus physics aur chemistry ka core concept hai, kyunki atom ka mass aur majority energy nucleus me concentrated hoti hai. Nuclear structure ka study fundamental particles, nuclear forces, energy levels aur stability ko explain karta hai. Is post me hum nuclear components, nuclear models, binding energy, nuclear reactions, stability criteria, isotopes, and applications detail me discuss karenge.


1. Introduction

Nucleus atom ka central part hai jahan protons aur neutrons (nucleons) reside karte hain. Ye positively charged aur densely packed hota hai.

Key Points:

  • Atom ka mass majority nucleus me concentrated hai.
  • Nucleus ka size ~10⁻¹⁵ m (1 femtometer).
  • Nuclear structure samajhne se nuclear energy, radioactivity aur particle physics me advancements hoti hain.

2. Discovery of the Nucleus

2.1 Rutherford’s Gold Foil Experiment (1911)

  • Alpha particles incident on thin gold foil.
  • Observation: Most particles pass, kuch deflect at large angles.
  • Conclusion: Atom mostly empty space, small dense positively charged nucleus exists.

2.2 Proton and Neutron Discovery

  • Proton discovered by Rutherford (1917) → hydrogen nucleus.
  • Neutron discovered by James Chadwick (1932) → neutral particle in nucleus.

3. Components of the Nucleus

3.1 Protons

  • Symbol: p+p^+p+
  • Positive charge = +1.6 × 10⁻¹⁹ C
  • Mass = 1.6726 × 10⁻²⁷ kg

3.2 Neutrons

  • Symbol: n0n^0n0
  • Neutral particle
  • Mass = 1.675 × 10⁻²⁷ kg

3.3 Nuclear Forces

  • Strong nuclear force → binds protons and neutrons
  • Attractive, short-range (~1-3 fm)
  • Overcomes Coulomb repulsion between protons

4. Nuclear Size and Density

  • Nuclear radius: R=R0A1/3R = R_0 A^{1/3}R=R0​A1/3, R0≈1.2×10−15mR_0 \approx 1.2 \times 10^{-15} mR0​≈1.2×10−15m
  • Nuclear density: ρ=massvolume≈2.3×1017kg/m3\rho = \frac{mass}{volume} \approx 2.3 \times 10^{17} kg/m^3ρ=volumemass​≈2.3×1017kg/m3
  • Nearly constant for all nuclei

5. Nuclear Models

5.1 Liquid Drop Model (Weizsäcker)

  • Nucleus behaves like incompressible liquid drop
  • Explains: Nuclear binding energy, fission
  • Semi-empirical mass formula (SEMF)

B=avA−asA2/3−acZ(Z−1)A1/3−aa(A−2Z)2A+δB = a_v A – a_s A^{2/3} – a_c \frac{Z(Z-1)}{A^{1/3}} – a_a \frac{(A-2Z)^2}{A} + \deltaB=av​A−as​A2/3−ac​A1/3Z(Z−1)​−aa​A(A−2Z)2​+δ

  • Terms: volume, surface, Coulomb, asymmetry, pairing

5.2 Shell Model (Mayer & Jensen)

  • Nucleons occupy energy levels (shells)
  • Explains magic numbers (2,8,20,28,50,82,126) → extra stability
  • Analogous to electron configuration in atoms

5.3 Collective Model

  • Combines liquid drop & shell models
  • Explains rotational & vibrational states of nucleus

6. Nuclear Binding Energy

  • Binding energy = Energy required to separate nucleus into individual nucleons
  • Mass defect: Δm=[Zmp+Nmn−mnucleus]\Delta m = [Zm_p + N m_n – m_{nucleus}]Δm=[Zmp​+Nmn​−mnucleus​]
  • Einstein relation: E=Δmc2E = \Delta m c^2E=Δmc2

Significance:

  • Determines nuclear stability
  • Basis of nuclear fission & fusion energy

Example:

  • For Helium-4:

B=[(2⋅1.0078+2⋅1.0087)−4.0026]×931.5 MeV≈28.3 MeVB = [(2 \cdot 1.0078 + 2 \cdot 1.0087) – 4.0026] \times 931.5 \text{ MeV} \approx 28.3 \text{ MeV}B=[(2⋅1.0078+2⋅1.0087)−4.0026]×931.5 MeV≈28.3 MeV


7. Nuclear Stability

7.1 Neutron-to-Proton Ratio (N/Z)

  • Light nuclei: N ≈ Z → stable
  • Heavy nuclei: N > Z → stable
  • Determines beta decay tendencies

7.2 Magic Numbers

  • Extra stability for nuclei with magic numbers of protons/neutrons
  • Explains existence of stable isotopes

7.3 Binding Energy per Nucleon Curve

  • Peaks around Iron-56
  • Explains why fusion releases energy for light nuclei, fission releases energy for heavy nuclei

8. Types of Nuclei

  1. Stable Nuclei: N/Z ratio optimal
  2. Radioactive Nuclei: Unstable → decay via alpha, beta, gamma
  3. Exotic Nuclei: Neutron-rich or proton-rich

9. Nuclear Reactions

9.1 Fission

  • Heavy nucleus splits → energy release
  • Example: 235U+n→141Ba+92Kr+3n+energy^{235}U + n \rightarrow ^{141}Ba + ^{92}Kr + 3n + energy235U+n→141Ba+92Kr+3n+energy
  • Basis of nuclear reactors & weapons

9.2 Fusion

  • Light nuclei combine → energy release
  • Example: 2H+3H→4He+n+17.6MeV^2H + ^3H \rightarrow ^4He + n + 17.6 MeV2H+3H→4He+n+17.6MeV
  • Source of stellar energy

9.3 Radioactive Decay

  • Alpha (α\alphaα), Beta (β\betaβ), Gamma (γ\gammaγ) decay
  • Follows half-life law

N=N0e−λtN = N_0 e^{-\lambda t}N=N0​e−λt


10. Experimental Techniques to Study Nuclear Structure

  1. Scattering Experiments: Rutherford, electron scattering
  2. Spectroscopy: Gamma-ray spectroscopy → energy levels
  3. Particle Accelerators: Probe nucleus via high-energy collisions
  4. Neutron Activation Analysis: Composition & structure study

11. Applications of Nuclear Structure

11.1 Energy Production

  • Nuclear reactors (fission)
  • Fusion research (ITER, tokamak)

11.2 Medicine

  • Radiotherapy (cancer treatment)
  • Diagnostic isotopes (PET, SPECT)

11.3 Industry

  • Radiography (material inspection)
  • Tracers for chemical processes

11.4 Scientific Research

  • Particle physics (CERN, LHC)
  • Nuclear astrophysics (stellar nucleosynthesis)

12. Modern Perspectives

  • Quantum Chromodynamics (QCD) → quarks & gluons explain nucleon structure
  • Exotic nuclei & halo nuclei research
  • Nuclear structure critical for energy security, medical applications, and advanced material research

13. Diagrams to Include

  1. Schematic of nucleus (protons & neutrons)
  2. Binding energy curve
  3. Shell model diagram
  4. Liquid drop model illustration
  5. Fission & fusion process diagram

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *